Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38653236

RESUMO

Glioma contains malignant cells in diverse states. Here, we combine spatial transcriptomics, spatial proteomics, and computational approaches to define glioma cellular states and uncover their organization. We find three prominent modes of organization. First, gliomas are composed of small local environments, each typically enriched with one major cellular state. Second, specific pairs of states preferentially reside in proximity across multiple scales. This pairing of states is consistent across tumors. Third, these pairwise interactions collectively define a global architecture composed of five layers. Hypoxia appears to drive the layers, as it is associated with a long-range organization that includes all cancer cell states. Accordingly, tumor regions distant from any hypoxic/necrotic foci and tumors that lack hypoxia such as low-grade IDH-mutant glioma are less organized. In summary, we provide a conceptual framework for the organization of cellular states in glioma, highlighting hypoxia as a long-range tissue organizer.

2.
Sci Immunol ; 9(91): eabq6930, 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38215193

RESUMO

The thymus is a primary lymphoid organ that is essential for the establishment of adaptive immunity through generation of immunocompetent T cells. In response to various stress signals, the thymus undergoes acute but reversible involution. However, the mechanisms governing its recovery are incompletely understood. Here, we used a dexamethasone-induced acute thymic involution mouse model to investigate how thymic hematopoietic cells (excluding T cells) contribute to thymic regeneration. scRNA-seq analysis revealed marked transcriptional and cellular changes in various thymic populations and highlighted thymus-resident innate lymphoid cells type 2 (ILC2) as a key cell type involved in the response to damage. We identified that ILC2 are activated by the alarmins IL-25 and IL-33 produced in response to tissue damage by thymic tuft cells and fibroblasts, respectively. Moreover, using mouse models deficient in either tuft cells and/or IL-33, we found that these alarmins are required for effective thymus regeneration after dexamethasone-induced damage. We also demonstrate that upon their damage-dependent activation, thymic ILC2 produce several effector molecules linked to tissue regeneration, such as amphiregulin and IL-13, which in turn promote thymic epithelial cell differentiation. Collectively, our study elucidates a previously undescribed role for thymic tuft cells and fibroblasts in thymus regeneration through activation of the type 2 immune response.


Assuntos
Imunidade Inata , Interleucina-33 , Camundongos , Animais , Linfócitos , 60419 , Alarminas , Modelos Animais de Doenças , Fibroblastos , Dexametasona/farmacologia
4.
Nature ; 622(7983): 562-573, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37673118

RESUMO

The ability to study human post-implantation development remains limited owing to ethical and technical challenges associated with intrauterine development after implantation1. Embryo-like models with spatially organized morphogenesis and structure of all defining embryonic and extra-embryonic tissues of the post-implantation human conceptus (that is, the embryonic disc, the bilaminar disc, the yolk sac, the chorionic sac and the surrounding trophoblast layer) remain lacking1,2. Mouse naive embryonic stem cells have recently been shown to give rise to embryonic and extra-embryonic stem cells capable of self-assembling into post-gastrulation structured stem-cell-based embryo models with spatially organized morphogenesis (called SEMs)3. Here we extend those findings to humans using only genetically unmodified human naive embryonic stem cells (cultured in human enhanced naive stem cell medium conditions)4. Such human fully integrated and complete SEMs recapitulate the organization of nearly all known lineages and compartments of post-implantation human embryos, including the epiblast, the hypoblast, the extra-embryonic mesoderm and the trophoblast layer surrounding the latter compartments. These human complete SEMs demonstrated developmental growth dynamics that resemble key hallmarks of post-implantation stage embryogenesis up to 13-14 days after fertilization (Carnegie stage 6a). These include embryonic disc and bilaminar disc formation, epiblast lumenogenesis, polarized amniogenesis, anterior-posterior symmetry breaking, primordial germ-cell specification, polarized yolk sac with visceral and parietal endoderm formation, extra-embryonic mesoderm expansion that defines a chorionic cavity and a connecting stalk, and a trophoblast-surrounding compartment demonstrating syncytium and lacunae formation. This SEM platform will probably enable the experimental investigation of previously inaccessible windows of human early post implantation up to peri-gastrulation development.


Assuntos
Implantação do Embrião , Embrião de Mamíferos , Desenvolvimento Embrionário , Células-Tronco Embrionárias Humanas , Humanos , Embrião de Mamíferos/citologia , Embrião de Mamíferos/embriologia , Fertilização , Gastrulação , Camadas Germinativas/citologia , Camadas Germinativas/embriologia , Células-Tronco Embrionárias Humanas/citologia , Trofoblastos/citologia , Saco Vitelino/citologia , Saco Vitelino/embriologia , Células Gigantes/citologia
5.
Nature ; 622(7981): 164-172, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674082

RESUMO

Development of immunocompetent T cells in the thymus is required for effective defence against all types of pathogens, including viruses, bacteria and fungi. To this end, T cells undergo a very strict educational program in the thymus, during which both non-functional and self-reactive T cell clones are eliminated by means of positive and negative selection1.Thymic epithelial cells (TECs) have an indispensable role in these processes, and previous studies have shown the notable heterogeneity of these cells2-7. Here, using multiomic analysis, we provide further insights into the functional and developmental diversity of TECs in mice, and reveal a detailed atlas of the TEC compartment according to cell transcriptional states and chromatin landscapes. Our analysis highlights unconventional TEC subsets that are similar to functionally well-defined parenchymal populations, including endocrine cells, microfold cells and myocytes. By focusing on the endocrine and microfold TEC populations, we show that endocrine TECs require Insm1 for their development and are crucial to maintaining thymus cellularity in a ghrelin-dependent manner; by contrast, microfold TECs require Spib for their development and are essential for the generation of thymic IgA+ plasma cells. Collectively, our study reveals that medullary TECs have the potential to differentiate into various types of molecularly distinct and functionally defined cells, which not only contribute to the induction of central tolerance, but also regulate the homeostasis of other thymus-resident populations.


Assuntos
Tolerância a Antígenos Próprios , Linfócitos T , Timo , Animais , Camundongos , Diferenciação Celular , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Tolerância a Antígenos Próprios/imunologia , Tolerância a Antígenos Próprios/fisiologia , Linfócitos T/classificação , Linfócitos T/citologia , Linfócitos T/imunologia , Timo/citologia , Timo/imunologia , Tecido Parenquimatoso , Células Musculares , Células Endócrinas , Cromatina , Transcrição Gênica , Grelina
6.
Nat Med ; 29(5): 1191-1200, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106166

RESUMO

Erythropoietin (Epo) is the master regulator of erythropoiesis and oxygen homeostasis. Despite its physiological importance, the molecular and genomic contexts of the cells responsible for renal Epo production remain unclear, limiting more-effective therapies for anemia. Here, we performed single-cell RNA and transposase-accessible chromatin (ATAC) sequencing of an Epo reporter mouse to molecularly identify Epo-producing cells under hypoxic conditions. Our data indicate that a distinct population of kidney stroma, which we term Norn cells, is the major source of endocrine Epo production in mice. We use these datasets to identify the markers, signaling pathways and transcriptional circuits characteristic of Norn cells. Using single-cell RNA sequencing and RNA in situ hybridization in human kidney tissues, we further provide evidence that this cell population is conserved in humans. These preliminary findings open new avenues to functionally dissect EPO gene regulation in health and disease and may serve as groundwork to improve erythropoiesis-stimulating therapies.


Assuntos
Anemia , Eritropoetina , Animais , Humanos , Camundongos , Anemia/genética , Eritropoese/genética , Eritropoetina/genética , Rim/metabolismo , RNA/metabolismo
7.
Cell Rep ; 42(2): 112117, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36790930

RESUMO

Astrocytes are essential for synapse formation, maturation, and plasticity; however, their function during developmental neuronal remodeling is largely unknown. To identify astrocytic molecules required for axon pruning of mushroom body (MB) γ neurons in Drosophila, we profiled astrocytes before (larva) and after (adult) remodeling. Focusing on genes enriched in larval astrocytes, we identified 12 astrocytic genes that are required for axon pruning, including the F-actin regulators Actin-related protein 2/3 complex, subunit 1 (Arpc1) and formin3 (form3). Interestingly, perturbing astrocytic actin dynamics does not affect their gross morphology, migration, or transforming growth factor ß (TGF-ß) secretion. In contrast, actin dynamics is required for astrocyte infiltration into the axon bundle at the onset of pruning. Remarkably, decreasing axonal adhesion facilitates infiltration by Arpc1 knockdown (KD) astrocytes and promotes axon pruning. Conversely, increased axonal adhesion reduces lobe infiltration by wild-type (WT) astrocytes. Together, our findings suggest that actin-dependent astrocytic infiltration is a key step in axon pruning, thus promoting our understanding of neuron-glia interactions during remodeling.


Assuntos
Actinas , Proteínas de Drosophila , Animais , Actinas/metabolismo , Astrócitos/metabolismo , Axônios/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neurônios/metabolismo
8.
Open Biol ; 12(9): 220206, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36168804

RESUMO

Alternative splicing produces various mRNAs, and thereby various protein products, from one gene, impacting a wide range of cellular activities. However, accurate reconstruction and quantification of full-length transcripts using short-reads is limited, due to their length. Long-reads sequencing technologies may provide a solution by sequencing full-length transcripts. We explored the use of both Illumina short-reads and two long Oxford Nanopore Technology (cDNA and Direct RNA) RNA-Seq reads for detecting global differential splicing during mouse embryonic stem cell differentiation, applying several bioinformatics strategies: gene-based, isoform-based and exon-based. We detected the strongest similarity among the sequencing platforms at the gene level compared to exon-based and isoform-based. Furthermore, the exon-based strategy discovered many differential exon usage (DEU) events, mostly in a platform-dependent manner and in non-differentially expressed genes. Thus, the platforms complemented each other in the ability to detect DEUs (i.e. long-reads exhibited an advantage in detecting DEUs at the UTRs, and short-reads detected more DEUs). Exons within 20 genes, detected in one or more platforms, were here validated by PCR, including key differentiation genes, such as Mdb3 and Aplp1. We provide an important analysis resource for discovering transcriptome changes during stem cell differentiation and insights for analysing such data.


Assuntos
Processamento Alternativo , Sequenciamento de Nucleotídeos em Larga Escala , Animais , DNA Complementar/genética , Éxons , Perfilação da Expressão Gênica , Camundongos , Isoformas de Proteínas/genética , RNA/genética , Análise de Sequência de RNA , Transcriptoma , Regiões não Traduzidas
9.
Cell Rep Methods ; 2(8): 100259, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-36046622

RESUMO

Profiling of gene expression in sparse populations of genetically defined neurons is essential for dissecting the molecular mechanisms that control the development and plasticity of neural circuits. However, current transcriptomic approaches are ill suited for detailed mechanistic studies in sparse neuronal populations, as they either are technically complex and relatively expensive (e.g., single-cell RNA sequencing [RNA-seq]) or require large amounts of input material (e.g., traditional bulk RNA-seq). Thus, we established Meso-seq, a meso-scale protocol for identifying more than 10,000 robustly expressed genes in as little as 50 FACS-sorted neuronal nuclei. We demonstrate that Meso-seq works well for multiple neuroscience applications, including transcriptomics in antibody-labeled cortical neurons in mice and non-human primates, analyses of experience-regulated gene programs, and RNA-seq from visual cortex neurons labeled ultra-sparsely with viruses. Given its simplicity, robustness, and relatively low costs, Meso-seq is well suited for molecular-mechanistic studies in ultra-sparse neuronal populations in the brain.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Camundongos , Animais , Transcriptoma/genética , Perfilação da Expressão Gênica/métodos , Neurônios/metabolismo , Encéfalo , Sequência de Bases
10.
Cell ; 185(18): 3290-3306.e25, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35988542

RESUMO

In vitro cultured stem cells with distinct developmental capacities can contribute to embryonic or extraembryonic tissues after microinjection into pre-implantation mammalian embryos. However, whether cultured stem cells can independently give rise to entire gastrulating embryo-like structures with embryonic and extraembryonic compartments remains unknown. Here, we adapt a recently established platform for prolonged ex utero growth of natural embryos to generate mouse post-gastrulation synthetic whole embryo models (sEmbryos), with both embryonic and extraembryonic compartments, starting solely from naive ESCs. This was achieved by co-aggregating non-transduced ESCs, with naive ESCs transiently expressing Cdx2 or Gata4 to promote their priming toward trophectoderm and primitive endoderm lineages, respectively. sEmbryos adequately accomplish gastrulation, advance through key developmental milestones, and develop organ progenitors within complex extraembryonic compartments similar to E8.5 stage mouse embryos. Our findings highlight the plastic potential of naive pluripotent cells to self-organize and functionally reconstitute and model the entire mammalian embryo beyond gastrulation.


Assuntos
Células-Tronco Embrionárias , Gastrulação , Animais , Diferenciação Celular/fisiologia , Embrião de Mamíferos/fisiologia , Desenvolvimento Embrionário , Endoderma , Mamíferos , Camundongos
11.
Nat Biotechnol ; 40(9): 1360-1369, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35449415

RESUMO

Most spatial transcriptomics technologies are limited by their resolution, with spot sizes larger than that of a single cell. Although joint analysis with single-cell RNA sequencing can alleviate this problem, current methods are limited to assessing discrete cell types, revealing the proportion of cell types inside each spot. To identify continuous variation of the transcriptome within cells of the same type, we developed Deconvolution of Spatial Transcriptomics profiles using Variational Inference (DestVI). Using simulations, we demonstrate that DestVI outperforms existing methods for estimating gene expression for every cell type inside every spot. Applied to a study of infected lymph nodes and of a mouse tumor model, DestVI provides high-resolution, accurate spatial characterization of the cellular organization of these tissues and identifies cell-type-specific changes in gene expression between different tissue regions or between conditions. DestVI is available as part of the open-source software package scvi-tools ( https://scvi-tools.org ).


Assuntos
Neoplasias , Transcriptoma , Animais , Perfilação da Expressão Gênica/métodos , Camundongos , Neoplasias/genética , Análise de Célula Única/métodos , Software , Transcriptoma/genética , Sequenciamento do Exoma
12.
Nat Aging ; 2(1): 60-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-37118355

RESUMO

Microglia and monocyte-derived macrophages (MDM) are key players in dealing with Alzheimer's disease. In amyloidosis mouse models, activation of microglia was found to be TREM2 dependent. Here, using Trem2-/-5xFAD mice, we assessed whether MDM act via a TREM2-dependent pathway. We adopted a treatment protocol targeting the programmed cell death ligand-1 (PD-L1) immune checkpoint, previously shown to modify Alzheimer's disease via MDM involvement. Blockade of PD-L1 in Trem2-/-5xFAD mice resulted in cognitive improvement and reduced levels of water-soluble amyloid beta1-42 with no effect on amyloid plaque burden. Single-cell RNA sequencing revealed that MDM, derived from both Trem2-/- and Trem2+/+5xFAD mouse brains, express a unique set of genes encoding scavenger receptors (for example, Mrc1, Msr1). Blockade of monocyte trafficking using anti-CCR2 antibody completely abrogated the cognitive improvement induced by anti-PD-L1 treatment in Trem2-/-5xFAD mice and similarly, but to a lesser extent, in Trem2+/+5xFAD mice. These results highlight a TREM2-independent, disease-modifying activity of MDM in an amyloidosis mouse model.


Assuntos
Doença de Alzheimer , Amiloidose , Camundongos , Animais , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Macrófagos/metabolismo , Amiloidose/genética , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
13.
Nat Plants ; 7(6): 800-813, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34135484

RESUMO

The vegetative-to-floral transition is a dramatic developmental change of the shoot apical meristem, promoted by the systemic florigen signal. However, poor molecular temporal resolution of this dynamic process has precluded characterization of how meristems respond to florigen induction. Here, we develop a technology that allows sensitive transcriptional profiling of individual shoot apical meristems. Computational ordering of hundreds of tomato samples reconstructed the floral transition process at fine temporal resolution and uncovered novel short-lived gene expression programs that are activated before flowering. These programs are annulled only when both florigen and a parallel signalling pathway are eliminated. Functional screening identified genes acting at the onset of pre-flowering programs that are involved in the regulation of meristem morphogenetic changes but dispensable for the timing of floral transition. Induced expression of these short-lived transition-state genes allowed us to determine their genetic hierarchies and to bypass the need for the main flowering pathways. Our findings illuminate how systemic and autonomous pathways are integrated to control a critical developmental switch.


Assuntos
Flores/genética , Perfilação da Expressão Gênica/métodos , Meristema/genética , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Simulação por Computador , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/citologia , Solanum lycopersicum/crescimento & desenvolvimento , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Microscopia Eletrônica de Varredura , Mutação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas
14.
EMBO J ; 40(12): e105763, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33847376

RESUMO

The mechanisms controlling wiring of neuronal networks are not completely understood. The stereotypic architecture of the Drosophila mushroom body (MB) offers a unique system to study circuit assembly. The adult medial MB γ-lobe is comprised of a long bundle of axons that wire with specific modulatory and output neurons in a tiled manner, defining five distinct zones. We found that the immunoglobulin superfamily protein Dpr12 is cell-autonomously required in γ-neurons for their developmental regrowth into the distal γ4/5 zones, where both Dpr12 and its interacting protein, DIP-δ, are enriched. DIP-δ functions in a subset of dopaminergic neurons that wire with γ-neurons within the γ4/5 zone. During metamorphosis, these dopaminergic projections arrive to the γ4/5 zone prior to γ-axons, suggesting that γ-axons extend through a prepatterned region. Thus, Dpr12/DIP-δ transneuronal interaction is required for γ4/5 zone formation. Our study sheds light onto molecular and cellular mechanisms underlying circuit formation within subcellular resolution.


Assuntos
Axônios/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/metabolismo , Corpos Pedunculados/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Masculino , Metamorfose Biológica , Mutação
15.
Nature ; 593(7857): 119-124, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33731940

RESUMO

The mammalian body plan is established shortly after the embryo implants into the maternal uterus, and our understanding of post-implantation developmental processes remains limited. Although pre- and peri-implantation mouse embryos are routinely cultured in vitro1,2, approaches for the robust culture of post-implantation embryos from egg cylinder stages until advanced organogenesis remain to be established. Here we present highly effective platforms for the ex utero culture of post-implantation mouse embryos, which enable the appropriate development of embryos from before gastrulation (embryonic day (E) 5.5) until the hindlimb formation stage (E11). Late gastrulating embryos (E7.5) are grown in three-dimensional rotating bottles, whereas extended culture from pre-gastrulation stages (E5.5 or E6.5) requires a combination of static and rotating bottle culture platforms. Histological, molecular and single-cell RNA sequencing analyses confirm that the ex utero cultured embryos recapitulate in utero development precisely. This culture system is amenable to the introduction of a variety of embryonic perturbations and micro-manipulations, the results of which can be followed ex utero for up to six days. The establishment of a system for robustly growing normal mouse embryos ex utero from pre-gastrulation to advanced organogenesis represents a valuable tool for investigating embryogenesis, as it eliminates the uterine barrier and allows researchers to mechanistically interrogate post-implantation morphogenesis and artificial embryogenesis in mammals.


Assuntos
Técnicas de Cultura Embrionária , Embrião de Mamíferos/embriologia , Desenvolvimento Embrionário , Técnicas In Vitro , Organogênese , Animais , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/citologia , Feminino , Gastrulação , Masculino , Camundongos , Fatores de Tempo , Útero
16.
Cell Death Discov ; 7(1): 2, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33414444

RESUMO

NF-κB is a well-characterized transcription factor, widely known for its roles in inflammation and immune responses, as well as in control of cell division and apoptosis. However, its function in ß-cells is still being debated, as it appears to depend on the timing and kinetics of its activation. To elucidate the temporal role of NF-κB in vivo, we have generated two transgenic mouse models, the ToIß and NOD/ToIß mice, in which NF-κB activation is specifically and conditionally inhibited in ß-cells. In this study, we present a novel function of the canonical NF-κB pathway during murine islet ß-cell development. Interestingly, inhibiting the NF-κB pathway in ß-cells during embryogenesis, but not after birth, in both ToIß and NOD/ToIß mice, increased ß-cell turnover, ultimately resulting in a reduced ß-cell mass. On the NOD background, this was associated with a marked increase in insulitis and diabetes incidence. While a robust nuclear immunoreactivity of the NF-κB p65-subunit was found in neonatal ß-cells, significant activation was not detected in ß-cells of either adult NOD/ToIß mice or in the pancreata of recently diagnosed adult T1D patients. Moreover, in NOD/ToIß mice, inhibiting NF-κB post-weaning had no effect on the development of diabetes or ß-cell dysfunction. In conclusion, our data point to NF-κB as an important component of the physiological regulatory circuit that controls the balance of ß-cell proliferation and apoptosis in the early developmental stages of insulin-producing cells, thus modulating ß-cell mass and the development of diabetes in the mouse model of T1D.

17.
Elife ; 102021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33448926

RESUMO

The mechanical challenge of attaching elastic tendons to stiff bones is solved by the formation of a unique transitional tissue. Here, we show that murine tendon-to-bone attachment cells are bi-fated, activating a mixture of chondrocyte and tenocyte transcriptomes, under regulation of shared regulatory elements and Krüppel-like factors (KLFs) transcription factors. High-throughput bulk and single-cell RNA sequencing of humeral attachment cells revealed expression of hundreds of chondrogenic and tenogenic genes, which was validated by in situ hybridization and single-molecule ISH. ATAC sequencing showed that attachment cells share accessible intergenic chromatin areas with either tenocytes or chondrocytes. Epigenomic analysis revealed enhancer signatures for most of these regions. Transgenic mouse enhancer reporter assays verified the shared activity of some of these enhancers. Finally, integrative chromatin and motif analyses and transcriptomic data implicated KLFs as regulators of attachment cells. Indeed, blocking expression of both Klf2 and Klf4 in developing limb mesenchyme impaired their differentiation.


Assuntos
Condrócitos/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Tenócitos/metabolismo , Transcriptoma , Animais , Osso e Ossos , Feminino , Fator 4 Semelhante a Kruppel/genética , Fator 4 Semelhante a Kruppel/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Sequências Reguladoras de Ácido Nucleico , Tendões
18.
Nat Genet ; 52(11): 1208-1218, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33128048

RESUMO

Cultured cell lines are the workhorse of cancer research, but the extent to which they recapitulate the heterogeneity observed among malignant cells in tumors is unclear. Here we used multiplexed single-cell RNA-seq to profile 198 cancer cell lines from 22 cancer types. We identified 12 expression programs that are recurrently heterogeneous within multiple cancer cell lines. These programs are associated with diverse biological processes, including cell cycle, senescence, stress and interferon responses, epithelial-mesenchymal transition and protein metabolism. Most of these programs recapitulate those recently identified as heterogeneous within human tumors. We prioritized specific cell lines as models of cellular heterogeneity and used them to study subpopulations of senescence-related cells, demonstrating their dynamics, regulation and unique drug sensitivities, which were predictive of clinical response. Our work describes the landscape of heterogeneity within diverse cancer cell lines and identifies recurrent patterns of heterogeneity that are shared between tumors and specific cell lines.


Assuntos
Linhagem Celular Tumoral , Heterogeneidade Genética , Neoplasias/genética , Lesões Pré-Cancerosas/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Senescência Celular/genética , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , RNA-Seq , Estresse Fisiológico/genética , Microambiente Tumoral
19.
Cell ; 182(4): 872-885.e19, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32783915

RESUMO

Cell function and activity are regulated through integration of signaling, epigenetic, transcriptional, and metabolic pathways. Here, we introduce INs-seq, an integrated technology for massively parallel recording of single-cell RNA sequencing (scRNA-seq) and intracellular protein activity. We demonstrate the broad utility of INs-seq for discovering new immune subsets by profiling different intracellular signatures of immune signaling, transcription factor combinations, and metabolic activity. Comprehensive mapping of Arginase 1-expressing cells within tumor models, a metabolic immune signature of suppressive activity, discovers novel Arg1+ Trem2+ regulatory myeloid (Mreg) cells and identifies markers, metabolic activity, and pathways associated with these cells. Genetic ablation of Trem2 in mice inhibits accumulation of intra-tumoral Mreg cells, leading to a marked decrease in dysfunctional CD8+ T cells and reduced tumor growth. This study establishes INs-seq as a broadly applicable technology for elucidating integrated transcriptional and intra-cellular maps and identifies the molecular signature of myeloid suppressive cells in tumors.


Assuntos
Glicoproteínas de Membrana/metabolismo , Neoplasias/patologia , RNA Citoplasmático Pequeno/química , Receptores Imunológicos/metabolismo , Animais , Arginase/genética , Arginase/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Células Dendríticas/citologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Feminino , Regulação da Expressão Gênica , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos/farmacologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Neoplasias/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Receptores Imunológicos/genética , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/metabolismo , Microambiente Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...